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SUMMARY

Differential equations of bending of an idealized H-section beam
column were derived for a ponlinearly viscoelastic material whose
mechanical properties are analogous to a model consisting of a linear
spring in series with a nonlinear dashpot whose strain rate is propor-
tional to a power of the applied stress. The resulting constant stress
or load creep curve consists of a straight line, the slope of which can
be considered as the secondary creep rate of a real masterial.

The equations derived were used to obtain the creep-bending deflec-
tions of a beam in pure bending and of a colum with initial sinusocidal
deviation from straightness. The results of the analysis of the simple
beam showed that the deflections vary linearly with time. The analysis
of the deflections of the column, accomplished with the assumption thet
the original shape of the structure was maintained at all times, showed
the existence of a finite critical time at which the deflections become
indefinitely large. The critical time decreases rapidly with increasing
exial compression end column inaccuracy.

INTRODUCTION

The need for methods predicting the behavior of structural components
at high temperastures is becoming incressingly urgent, particularly in the
fields of aircraft structures and propulsion. During the past 40 years
considerable attention has been paid to the fundamental constant-stress
and constant-load tensile creep behavior of materisls. However, with few
exceptions, it 1s only recently that results of the investigation of the
creep behavior of beams and columms have been presented (see, e.g.,
refs. 1 to 9). It is the purpose of the present report to apply to the
problem of the creep behavior of beams and columms & stress-strain-time
relation which can be considered as a generalization of the relation
obtained between the strain rate and stress for a Maxwell linearly visco-
elastic model consisting of a spring connected in series with a dashpot
(see fig. 1 end refs. 6 and 8 to 10). While the original Maxwell model
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consists of a spring and dashpot, in each of which the strain is linearly
related to the stress, the model considered hérein consists of a linear
spring coupled with a nonlinear dashpot whose strain raete is proportional
to a power of the applled stress. The corresponding stress-straln-time
relation can be adapted to the creep characteristics of structural
materlals, such as aluminum or steel, by assuming that the usual creep
curve indicated by the dashed curve in figure 2(a) can be replaced by
the solid straight line also shown in the figure (see refs. 1 to 3).
Hence, the idealized creep curve takes into account the actual secondary
stage of creep, approximates the initial elastic or elastoplastic stage
and the primary creep stage, and ignores the final stage. It is intended
that the effective spring modulus, which defines the strain intercept of
the idealized creep curve, together with parameters defining the action
of the nonlinear dashpot, be determined from experiments at constant
temperatures.

In order to simplify the calculations involved in the analysis of
the creep behavior of beams and columns, the present investigation has
been confined to the study of the behavior at constent temperature of an
idealized H-beam, the cross section of which consists of two equal concen-
trated areas connected by a thin web of negligible bending resistance
(fig. 3). Two differential equatbtions for the determination of the deflec-
tions of a beam under combined sxial and lateral loads were derived, one
equation being spplicable when the stresses in both flanges are in com-
pression, the other when one flange 1s in compression and the other in
tension. These equations were used to determine the deflection-time rela-
tions for a beam in pure bending and for a simply supported column whose
axis before loading had the form of a half-sine wave.

The author is indebted to Professor N. J. Hoff for his guidance and
criticism, to Mr. S. A. Patel for his assistance, and to the National
Advisory Committee for Aeronautics for sponsorship of the research
reported in this paper.

SYMBOIS
A total flange ares of idealized H-section
Eq effective elastic modulus
Elc,Elt effective moduli for compression and tension, respectively
F=w/h

Fe = wc/h -
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Fy =wi/h

Fq =~wb/h

FTo total nondimensional deviation of axis of loaded columm from
x-axis at t =0

fesfy amplitudes of F, and Fi, respectively

£ = o + fp_

fp = £3/[1 - (5/0g)]

o
h distance between flanges of idealized H-section
I moment of inertia of ideelized H-section, Ah®/h
L length of bean
M bending moment
My constant bending moment
m exponent in viscosity term
me,my exponents for compression and tension, respectively
P axially coﬁpressive load
t time
ter critical time
w deflection due to loads
We time-dependent deflection, accrued for % >0
L initial deviation from straightness
Wo time-independent deflection due to loads at +t = O
Wi total deviation of axis of loaded column from x-axis at

o t =0

b 4 axlial coordinate of beam
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strain

strains on concave and convex sides of beam, respectively
(positive in compression)

strain at t =0, oy /E;
viscosity coefficient

viscosity coefficilents for compression and tension,
respectively

radius of curvature
stress

stresses on concave and convex sides of beam, respectively

_ 2
op = "°E,I/AL

o)

G

constant stress

average compressive stress, P/A

T = {El(eE)m/[hx(oE - E)]} t

Ty time paremeter corresponding to z = 1/2
Ter critical value of time parameter .

(") =3( )3t

( )y =3 )/

DERIVATION OF DIFFERENTIAL EQUATIONS OF BENDING OF
AN IDEALIZED H-SECTION

Stress-Strain-Time Law

The relation between the strain rate and the stress corresponding to
the model previously described is
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¢ = (5/2)) + (P (1)

in which € and o, respectively, are the strain and stress, E; is

the effective modulus, m and A are parameters defining the viscous
behavior of the materiasl, and the dot over a symbol indicates differenti-
ation with respect to time t. The three parameters E;, X, and m are
considered as constants for a given temperature and can be determined
experimentally from conventional constant stress or load uniaxial temsile
or compressive creep tests performed at constant temperatures. The cor-
responding relationship between stress, strain, and time for such tests
can be found from equation (1) if the strain €, at t =0 is taken

as 0o/Ey (see fig. 2(a)). Thus
/ey = (B /M)o" e + 1 (2)

This equation is shown plotted in Ffigure 2(b).

Adaptation of Stress-Strain-Time Law to
Bending and Buckling Problems

When & beam whose cross section can be represented by the idealized
H-section, shown in figure 3, is bent under the action of combined lateral
and axial loads, the stresses in each of the flanges may be compressive,
or the stress in one flange may be compressive and in the other tensile.
Thus, in applying equation (1) to the bending problem, the following forms
of this equetion have been used:

& = (5/50) + (0P (3)

for a flange under the action of compressive stress, and hence € and o
are positive in compression. The subscript ¢ denotes parameters deter-
mined from conventional compressive creep tests. Similarly,

€ = (8fe15) - (™) ()

for a flange under the action of tensile stresses, and hence ¢ 1is posi-
tive in compression and ¢ 1s positive in tension. The subscript +
refers to parameters determined from tensile creep tests.
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Equation (3) is valid for o 2 0 and positive in compression,
whereas equetion (L) applies when o >0 and positive in tension.

Stress-Load and Strain-Load Relations

If oc and Gy, respectively, are the stresses on the concave and

convex slde of an idealized H-beam loaded in the plane contalning the
web (see fig. 3) and if a moment M and an axially compressive load P
are applied as indicated in figures 3 and 4, then

Q
]

(P/8) + (2M/An)

oy = (P/A) - (2M/An)

in which Oc and oy are considered positive in compression, and

(2M/An) + (P/A)

Q
fl

(6)
(2M/ah) - (P/A)

9

in which o, is positive in compression, while oy 1s positive in ten-
sion. In equations (5) and (6) A/2 1is the area of each flange and h
is the distance between flanges. : '

When both flatiges are in compression, the strain in each flange can
be related to the applied loads with the aid of equations (3) and (5).
Thus : N

m
¢ = (l/Elc)(B/Bt)[(P/A) + (EM/Ah)] + (1/xc)[(P/A) + (2M/Ah)} ¢
> (7)

i m
& = (1/E1c)(6/6t)|:(P/A) - (EM/Ah):‘ + (1/xc)l:(P/A) - (EM/Ah)] ¢

J

in which éc and ét’ respectively, are the strain rates on the concave

and the convex sides of the beam, positive in compression.
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Similerly, when one flange is in compression end the other in
tension D

(1/51)(3/30) [ (2m/mn) + (B/0)] + (1/a0)[(aw/am) + (p/a]] ™

) ’(8)
-(1/Elt)(a/at){__(2M/Ah) - (P/A)] - (1/%)[(2M/Ah) - (P/-ii)]mG

4

Thus equations (7) are applicable when P/A > 2M/Ah and equa-
tions (8), when P/A < 2M/Ah.

€t

Differential Equations of Bending of a Beam Column

Since the strains ¢, and ¢, considered positive in compression,

are related to the radius of curvature p of the centroidal axis of the
beam by the equation

(ec - et)/n = 1/0 (9)
the differential equations of bending are readily obtained. Thus, if
P/AZ 2M/Ah, thet is, if both flanges are in compression, equations (7)
and (9), together with the condition that for small deflections p is
related to the deflection w by the relation

1/p = -vyy (9a)

where x 1s the axial coordinate of a point on the beam esxis and s sub-
script x Indicates differentiation with respect to X, yleld

-n( /3t ) (wxx) = (4/E; An)(3M/3t) + (1/xc){[(P/A) + (2M/an)] Te _
[(p/a) - (2/mn)] " (10)

I P/A < 2M/Ah, corresponding to one flange in compression and the
other in tension, then from equations (8) and (9)

-h(3/3t) () = (1/E1c)(3/3t)[ (2M/an) + (p/A] + (1/E1¢) (3/3t) [(2M/an) -
(2/a)] + (1/2)[(2/mn) + (2/a)] "C +
(1/r) [(2/an) - (2/A]] % (11)
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Furthermore, if . the parameters have the same values In tension and
compression, the subscript c¢ can be dropped in equation (10), and
equation (11) becomes

-n(3/3t)(Wyy) = (4/E;AN)(3M/3t) + (1/l){l§2M/Ah) + (P/Aﬂ oy
[(2w/an) - (p/a)] m} (11a)

Thus, equations (10) and (11) are the differential equations appli-
cable to the analysis of the creep-deflection behavior of an idealized
H-section beam column, the materisl of which behaves according to equa-
tions (3) and (L4).

APPIICATIONS OF DIFFERENTIAL EQUATIONS
OF BENDING

Beam Under Pure. Bending

Equation (11) can be readily applied to the problem of the determi-
nation of the creep deflections of an idealized H-section beam under the
action of constant end couples M,. Under such conditions this equeation
reduces to

. Te oy,
“hinge = (1/3)(2M,/80) © + (1/3;)(2Mo/An) (12)
The related boundary and initilal conditions for a beam of length L

with the origin of the axial coordinate x at one end of the beam are
that, at x =0 and L, w=0 and, at ©t =0, w 1is

Wy = [(;/Elc) + (1/Eltj](M5L2/hI)(x/L)[§ - (xﬁLﬂ (13)

which is obtained from & simple “"elastic" analysis. The moment of
inertls I of the cross section of the beam with respect to the center

line normal to the web (see fig. 3) is equal to Ah2/k,
Hence, the solution of equation. (12) can be expressed as

W= Wy = [Kl/xc)(eMo/Ah)mc +
(1/xt)(amo/m)m’ﬂ (22/en)(x/1)[1 - (x/1)]¢ (1%)
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If the materisl properties of the beam are the same for compression and
tension, equation (1%) can be expressed as

whig = (B1/2)(2M/a0) " + 1 (1ka)

or
w/vg = (El/x)com_lt +1 (1kb)

in which o0y 1s the absolute value of the constant stress 2M,/Ah acting
in each flange. It may be noted that equation (14b) can alsc be obtained
from solution of equations (2), (9), and (9a). Because the flange
stresses are constant and equal in magnitude, the ratio of the deflection
at seny time t and the deflection at t = O is the same as the ratio

of the strain at any time t and the strain at +t = 0 of a bar under

the action of constant tensile or compressive stresses (see fig. 2(Db)

and compare egs. (2) and (1kb)).

Columm With Initial Curvature

The deflection-time characteristics of an H-section column, whose
centroidal axis initially deviates from & straight line and whose
defining material parasmeters are the same for tension and compression,
can be investigated with the aid of equations (10) and (1la). For a
simply supported column with a constant axially compressive end load P,
the moment M is simply

M = P(w + wy) (15)
in which w is theé deflection due to loads and w3 represents the

initial deviation from straightness (see fig. 5). Thus, for P/A E’EM/Ah
and hence, from equation (15), for w + wy £ h/2, equation (10) becomes

Fyy + (GA/E{I)F + [(EE)m/)\.he:l {[(1/2) + F + Fy "

[(1/2) -F - Fi]m} =0 (16)
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in which
P/A=7
w/h = F
wyfn =y

Equation (16) is applicable to the present problem so long as both
flanges are in compression.

Similarly, for w + wi 2 h/2, that is, for the flange on the concave
side in compression and that on the convex side in tension, equation (1la)
yields

f"xx + ('O'_A/ElI)l%' + [(gg)m/mg] {[F + Fy + (1/2):1m N

[F+Fi-(l/2)]m}=0 (17)

It may be noted that equations (16) and (17) are identical if m is
an odd integer.

Since the deflection due to loads consists of the time-independent
deflection w,, obtained at t = O, and the time-dependent deflection
Wwo; accrued for t >0, F can be expressed as

F=Fg+Fy (18)
Hence,

F+ Ty =Fc+ Fp_ (19)

in which FTo represents the totasl deviation of the axis of the loaded

column from the x-axis at t = O and F. = w./h. Hence, equations (16)
and (17) become for F. + Fp_ < 1/2

i’cxx + (GA/B;I)F + [(gE)m/me} {[( 1/2) + Fg + FTQ]m -
[(1/2) - F, - FTo]m} =0 (20)
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and for Fe + Fp_ 2 1/2
chx + ('EA/E]_I)I'F'C + [(QE)H}/Ahé]{EFc + Fp_ + (1/2_)]111 +

[Fe + Fp_ - (1/2)]"f = o (21)

If m 1s unity, then (since eq. (1) reduces to the stress-strain-
time law for a Maxwell element) equations (20) and (21) are applicable
to the analysis of the behavior of the corresponding linearly visco-
elastic column (see refs. 6, 8, and 9). If the ratio of the initial
deviations from straightness and the distance between flsnges is taken
as

Fy = f3 sin (/L) (22)

in which L 1is the length of the beam and the coordinste x 1is measured
from a support (see fig. 5), the deflections of the column can be
expressed as

fc/fTo =e2T_ 1 (23)

where f. 1s the amplitude of the deflection F; accrued for t > O,
fTo is the amplitude of the total deviation from the x-axis of the

loaded column at t = O, and :

T ={E18/Eax(cE - E)] t
oy = zrgE]_I/Al?

The amplitude of the total nondimensional midspan deflection meas-
ured from the x-axis is

fT = fc + fTo
Equation (23) shows that for T < ag the creep deflections of the line-

arly viscoelastic column become infinitely large only for correspondingly
large values of time (refs. 8 and 9).
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For values of m other than unity, the collocation method can be
applied to the solution of equations (20) and (21). This method will
be used to investigate the midspan deflection of the column under the
assumption that the shape of the original deviation from straightness Fy
is maintained during the bending process. Hence, if Fy is as defined
in equation (22), them F. is assumed to be given by the equetion

F, = fc sin (mx/L) (2k)

Corresponding to equation (22), the total deviation of the sxis of the

loaded column from the x-axis at + = 0 is obtained from an "elastic"
analysis as

fp sin (mx/L) (25)
o

H
(o]
I

in which

}—h
I

T fi/[l - (5/og)]

Substitution of F, and F@o, respectively, from equations (24) and

(25) into equations (20) and (21) and evaluation of the resulting expres-
sions at x = L/2 yield the following equations for the nondimensional
midspan deflection f,: For f, + fp < 1/2..

o

ar./at - {[(1/2) + £+ .fTo]m - [(1/2)_ - £ - fTo]m} =0 (26)

and for fo + fp_ 2 1/2

afr,/aT - {[f‘c + £+ (1/2)]m + [Fe + fq_ - (1/2[["‘} =0 (27

in which the nondimensional time variable +  is defined as

T = {El(za)‘_‘/[ux(cE - E)]}t (28)
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Equation (26) is applicable if both flanges of the column are in compres-
sion, whereas equation (27) epplies when one of the flanges is in ten-
sion. The solution of equation (26) cen be written as

'r=b/"Z dz/{[(l/e) +z]m- [(1/2) —z]m} (29)
£,

in which z = £, + fr., end hence fir, Sz £ 1/2. Thus equation (29) is
valid provided O £T € Ty, where T3] corresponds to z = 1/2 and hence
to that time et which one flange is completely unstressed. If £y s1/e,

then equation (29) must be applied until T = Ty, whereupon the solution
to equation (27) becomes applicable. This solution is

T= Ty +j;;2 dz/{[z + (1/2{'m + Ez - (1/2)]% (30)

for 1/2<zSw and Ty $T ST, where Top 1is defined as the criti-
cal time and corresponds to infinite deflections. Thus s for fTo s 1/2,

Tep = T1 +\/§2 dz/{[z + (120]" + [z - (1/2)]m} (31)

and from equation (29)
1/2
T = f dz/{[(l/e) v 2] - [1/e) - z:lm} (32)
! fTO

It fTo 2 1/2, only one flange is in compression for all values of T,
and hence equation (27) applies throughout the duration of loading.
Therefore, for g >1/2

T =.fz dz/{[z s (/2] + [z - (1/2)]m} (33)
£
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and O €T £ Top, Where

Ter = fw dz/[z + (1/2):]m + |z - (1/2)]m} (34)
ﬁro

The integrals in equations (29) to (34) can be evaluated readily for
integral values of m. If m is an even integer (or fractional) all six
equations are required for a complete range of fyp  eand 7. If m is
an odd integer, since equations (26) and (27) are then identical, the
evaluation of the six equations reduces to the evaluation of equations (33)
and (34) for all values of fTo and T. Thus 77 no longer is of any

significance. A summary of equetions (29) to (34) is given in table 1
and the corresponding results of integration for m =1, 2, 3, &, and 5
are given in table 2. The integrations indicated in equations (29) to
(34) are performed in reference 11 in terms of m, where m is any
integer. It may be noted from comparison of equation (23) with the
results in table 2 that, for m = 1, the collocation method yields the

exact results of equation (23).

The expressions in table 2 were used to.obtain the deflection-time
curves shown in figures 6(a) to 6(d). These curves relate the nondimen-
sional time-dependent midspan deflection £, (accrued for T >0) to

the time varisble T and the initial total deviastion from the x-axis of
the midspan of the loaded column fip . In figure 6(a) the curve designated

m=2, O£tS$r1,0r m=1, 0SS 7 S, is valid for the case in which

m = 2 and both flanges are im compression, as well as for the entire time
range for m = 1 (see table 2). In table 3 the time to failure, charac-
terized by T.,, and the time to zero stress in the "temslon" flange,

represented by Ty, are listed for the m and fTo values considered
in figures 6(a) to 6(4d).
The curves in figures 6(a) to 6(d) show that for the same value of

the exponent m >1 the creep deflections become large much more rapidly
for large velues of fip, than for small values of this parameter. The

result is, of course, that the critical time parameter 7., decreases
as fTo increases (see table 3). These results are as expected, since
large values of fTO indicate either large initiasl deviations of the

column from stralghtness or large values of the average axlal compressive
stress ¢ < og. From table 3, as well as from a comparison of the loca-

tions of the asymptotes shown in figures 6(a) to 6(d), it is seen that
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for large values of fTo the critical time parameter 7., decreases
with increasing m, whereas for small values of fTo this parameter
increases with m. In this respect it may be noted, however, that since

Ter 18 proportional to T it is not a true measure of the actual
critical time ., (eq. (28)). Thus, it is probable that for real
materials the actual critical time t.,. decreases monotonically with
increasing m, since t 1s inversely proportional to o

DISCUSSION

Differential equations of bending of an idealized H-section beam
column were derived for a nonlinearly viscoelastic material whose mechan-
ical behavior 1s anslogous to a model consisting of a spring connected in
series with a dashpot. The spring was assumed to be elastic with a modu-
lus corresponding to the strain intercept of the projection of the second-
sry region of a conventionsl temnsile ar compressive creep curve, whereas
the dashpot was considered@ as nonlinear with a strain rate proportional
to a power of the stress. Thus, the conventional creep curve is repre-
sented by a straight line, the slope of which is the secondary creep rate
of the actual creep curve. The general equations, one which applies when
both flanges are in compression and the other when one flange is in com-
pression and the other in tension, are applicable to materials whose
mechanical properties for tension differ from those for compression.

The results of the analysis of the creep deflections of & beam under
pure bending showed that the deflectlons vary linearly with time. This
is to be expected, since the stress in each flange remains constant with
time, and hence each flange behaves in a menner analogous to a bar under
constant stress. If the material properties of the beam are the same for
tension and compression, the ratio of the deflection at any time t <o
the deflection at +t = 0 is identical to the ratio of the strain at the
same time + +o the strain at + = 0 of a bar under the action of a con-
stant stress whose magnitude is that of the stress in either flange of the
beam (see eqs. (2) and (14%b) and fig. 2(b)).

The nonlinear dlifferential equations for the bending of a simply
supported H-section column with initial sinusoidal deviation from straight-
ness were solved with the aild of the assumption that the shape of the
loaded column remained sinusoidal. The material properties of the beam
were assumed to be the same in tension and compression. In contrast with
the results presented in references 8 and 9 for linearly viscoelastic
columns, the nonlinearly viscoelastic columns investigated in the present
paper possessed "critical times." Thus for stresses less than the Euler



16 : NACA TN 3137

stress the deflections of an initially crooked column become infinitely
large in a finite time. In figures 6(a) to 6(d) curves are presented
showing the effect of the initial deviation from straightness of the loaded
column on the time behavior of the additional deflections obtained with
time. As expected, for a given exponent in the power law for viscosity the
creep deflections increased more rapldly with time for the larger values of
amplitude of the initisl deviation from straightness than for the smaller
values. Thus, the critical time decreasses very repidly with Increasing
initial deviation from straightness and end load.

Polytechnic .Institute of Brooklyn,
Brooklyn, N. Y., July 23, 1952. .
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(a) m even integer (or fractional)
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TABLE 2,- SOLUTTON OF CREEP-BUCKLING EQUATIONS FOR m = 1, 2, 3, 4, AND 5

(2) m oven integer

1 =1 2r _ tan-1 EfTD
I;3+2{§l:m 3+2V'2_ ¢ E+2ﬁ]

rTo £ Solution Tl Tor
m-2,t/T=l.(nE-")/(E]_Ez)
[ med T o
<fT"‘
0 2
%555- z=-étan('r--rl+§) Tl_,__z_
.%Sf'ro':- %5z5" z-étm[lwm'l(?f%)] % - tanNatp )
]I=l1-, t/-.--l.(ax-‘)/(#slil*)
fTBﬁ
1 SZ‘S—]-'- Z = ° J'].O -l —1——2-
o @ btm B(1 - o®7) 4 1 5(2+&T0
c<sp si TET
T, 35 N . _ Tl+v%{v312ﬁm-'_-gﬁ_
ten™ Ee— - fan” L - "
1s.se | AEEET R T
1 tan~1 +Qf§:l
[tm-l 85 fen-l \/E:’ i+ ol
+ 22 3 + 2|2 3+ 2
2
'I'F-‘/—-l_ Tég[tm'lrﬂm-tnn'l-]-j;l- i 1 tm-1y3-2|f2__
%gﬂro<w -;'-gﬁﬁ" 23 - o 3-2R 3-28 213 - & 251-0
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TABLE 2.- SOLUTION OF CRREP-BUCKLING EQUATIONS FOR m = 1, 2, 3, 4, ARD 5 - Concluded

(b) m odd integer (0 < fp <w, fp $z Tw)

Solution Ter

me 1, t/r = 2\(og - 7)/(&;5)

Zm fToe

m =3, t/r = Mog - 7)/(eE55)

3 1/2
Z = T e i log {1+ —
°e l*fTOE(l - e3T) + 3 : 3 hrToe

=5, ¥ = 2o - (B

_g-l 1OEM
e 2 a5 - 25 (5 V;) keg 2 45+ 25

8 .L_(2+_l_)1°3 422 + 5 - o5

T == log
fp 5 5

[«]

02
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TABIE 3.- VALUES OF 77 AND T., CORRESPONDING TO VALUES

OF m AND fp OF FIGURES 6(a) TO 6(d)

m =2 m =3

Ty 1 Ter Ter

0.01 1.956 2.7h1 2.974

.05 1.152 1.937 1.902

.10 .80L5 1.590 1.hhh

) .20 1582 1.2k .9943
.50 0 .85k RIS~

i 80 | eeeee- .5586 .2586
1.00 | —e---- 4637 .1865
2.00 |  eeme-- 2450 .05728

m=4 m=5

T Ty Ter Ter

0.01 3.565 3.891 5.612

.10 1.282 1.608 1.985
1.00 | —e-e- .09112 .ok767
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Figure 1.~ Maxwell model.

-

CONSTANT LOAD/'

L e

o/e] f

TIME

(a) Experimental.

€/ &

TaN[(E,/No,™ )

t

(b) Idealized.

Figure 2.~ Experimentel and ideslized creep curves.
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Figure 3.~ Cross section of ideslized H-section beam.
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Figure 4.- Portion of bent beam colum.
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Figure 5.~ Deflections of simply supported column.
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Figure 6.~ Variation of deflections accrued for t > 0 with time
paremeter T for m =2, 3, 4, and 5 and several values of
initial-deflection parameter fTo'
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Figure 6.- Continued.
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(d) n = 5.

Figure 6.~ Concluded.
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